# 半导体抽运[100]和[111]切割方向 Nd:YAG 激光器 被动调 Q 实验的研究

孙 哲 程秋桐 姜梦华 惠勇凌 雷 訇 李 强

(北京工业大学激光工程研究院,北京 100124)

摘要 热应力双折射产生的热退偏是限制 Nd:YAG 激光器线偏振输出功率的重要因素,相比于传统[111]切割方向 Nd:YAG 晶体,[100]切割方向 Nd:YAG 晶体的热退偏与振荡光偏振方向有关,通过寻找合适的偏振方向,能够显著提高[100]切割方向 Nd:YAG 激光器的线偏振输出功率。采用半导体端面抽运[111]和[100]切割方向 Nd:YAG 晶体棒,使用 Cr<sup>i+</sup>:YAG 晶体作为被动调 Q 晶体,进行被动调 Q 对比实验研究。实验结果表明,相比于传统的[111]切割方向 Nd:YAG 晶体棒,采用半导体抽运[100]切割方向 Nd:YAG 晶体棒进行被动调 Q,能够获得稳定、高消光比的线偏振光激光输出,输出激光消光比为 500:1,稳定度高于 96.5%。

关键词 激光器;被动调 Q;Nd:YAG;Cr<sup>4+</sup>:YAG

中图分类号 TN248.1 文献标识码 A doi: 10.3788/AOS201434.s114001

## Investigation of Diode Pumped Passively Q-Switched [100]and [111]-Cut Nd:YAG Laser

Sun Zhe Cheng Qiutong Jiang Menghua Hui Yongling Lei Hong Li Qiang (Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China)

**Abstract** Thermal depolarization caused by birefringence is a major factor that limits the output power of linearly polarized Nd: YAG laser. Compared with conventional [111]- cut Nd: YAG rod, the thermal depolarization depends on the polarization direction for the [100]- cut Nd: YAG rod. The linearly polarized output power can be improved by suitable modification of the polarization direction of oscillate laser. The [111]- and [100]- cut Nd: YAG rods are used as the gain medium and the  $Cr^{i+}$ : YAG crystal is used as the saturable absorber for passively *Q*-switched laser. The experiment demonstrates that in comparison with conventional [111]- cut Nd: YAG rod, highly stabled output with high extinction is achieved by using the [100]- cut Nd: YAG rod as the laser crystal. The extinction ratio is 500:1 and polarized output stability is higher than 96.5%.

Key words lasers; passive Q-switch; Nd:YAG; Cr<sup>1+</sup>:YAG OCIS codes 140.3580; 140.3540; 140.3615; 260.5430

1 引

激光二极管抽运的 Cr<sup>4+</sup>:YAG 被动调 Q 激光 器因其体积小、结构紧凑、重频高、脉宽短、峰值功率 高等优点,在激光雷达、激光微加工、遥感监测、非线 性频率变换等领域具有广阔的应用前景<sup>[1]</sup>。Cr<sup>4+</sup>: YAG 晶体具有热导性能好、吸收截面大、掺杂浓度 高、饱和光强小、损伤阈值高、光化学性质稳定、寿命 长,无退化现象易实现高峰值输出功率和高脉冲重 复频率等优点,从而被广泛应用在波长为 0.8~ 1.2 μm的被动调 Q 激光器和锁模激光器中<sup>[2-4]</sup>。

传统[111]切割方向的 Nd: YAG 晶体是应用最 广泛的被动调 Q 激光器增益介质之一,属于各向同

E-mail: allen-sun@emails. bjut. edu. cn

言

导师简介:李 强(1965—),男,博士,教授,主要从事全固态激光技术方面的研究。E-mail: ncltlq@ bjut.edu.cn

收稿日期: 2014-01-22; 收到修改稿日期: 2014-02-25

基金项目:国家自然科学基金(61378023)、北京市自然科学基金(4112005)

作者简介:孙 哲(1986—),男,博士研究生,主要从事全固态激光技术方面的研究。

性晶体,由于半导体激光器的发射光谱和 Nd:YAG 晶体的吸收光谱匹配程度高,因此在大功率抽运的 情况下,Nd:YAG 晶体的热效应会非常明显,进而 产生热应力、热致双折射等效应。尤其对于被动调 Q激光器,其腔内振荡光通常为线偏振光,因此由热 应力、热致双折射等效应造成的热退偏效应将更加 明显,严重影响[111]切割方向 Nd:YAG 被动调 Q 激光器输出激光的消光比和稳定性<sup>[5-6]</sup>。

近几年,针对特殊切割方向 Nd:YAG 晶体棒热 退偏的研究受到了广泛的关注。1970年,Koechner 等[7-8]对 Nd: YAG 晶体的热致双折射效应进行了 计算,给出了数学模型。1980年,Soms等<sup>[9]</sup>指出了 Koechner 结论中的错误,并正确计算出了[111]和 「001]切割方向 Nd: YAG 晶体热致双折射大小。 2002年, Shoji 等<sup>[10]</sup>系统地计算了 [111], [100]和 [110]切割方向 Nd: YAG 晶体的热致双折射大小, 计算结果表明采用「110]切割方向 Nd: YAG 晶体, 并适当选择光斑大小,就能够明显降低激光器的热 退偏效应。2010年, Puncken等[11]采用探测光对 [100]和[110]切割方向 Nd: YAG 晶体的热退偏大 小进行测量,从理论和实验上验证了采用[100]和 「110]切割方向 Nd: YAG 晶体能够明显降低激光器 的热退偏效应。2011年,Tünnermann等<sup>[12]</sup>采用半 导体端面抽运[111], [100]和[110]切割方向 Nd: YAG 棒激光器,在自由运转的条件下,采用[100]切 割方向 Nd: YAG 晶体相比于 [111] 切割方向 Nd: YAG 晶体能够减小80%的热退偏损耗。2012年, Sun 等<sup>[13]</sup> 采用半导体侧面抽运 [111] 和 [100] 切割 方向 Nd: YAG 棒,进行自由运转实验,同样得出采 用「100 ]切割方向 Nd: YAG 晶体能够明显降低激光 器热退偏效应的结论,相比于[111]切割方向 Nd: YAG 晶体棒,采用[100]切割方向 Nd: YAG 晶体棒 作为激光器增益介质时,能够将线偏振功率提高1 倍以上。最近几年国内外研究人员的研究证明,采 用特殊切割方向的 Nd:YAG 晶体棒代替传统[111] 切割方向的 Nd:YAG 晶体棒能够减小热退偏,通过 改变腔内的线偏振方向可以改变热退偏大小,并且 存在一个热退偏最小的方向。

本文在前期实验研究的基础上<sup>[13]</sup>,采用半导体 端面抽运[111]和[100]切割方向的 Nd:YAG 晶体 棒,并采用 Cr<sup>4+</sup>:YAG 晶体作为被动调 Q 晶体,进 行被动调 Q 实验研究。实验结果证明,采用[100] 切割方向的 Nd:YAG 晶体棒作为被动调 Q 激光器 的增益介质,能够明显提高输出激光脉冲的消光比 和稳定性。

#### 2 实验装置

为了对比研究「100]和「111]切割方向 Nd: YAG 晶体棒被动调 Q 输出特性,采用如图 1 所示 的实验结构, HWP为1/2波片, HR为全反膜, AR 为增透膜,T为透射率,「100]和「111]切割方向 Nd: YAG 晶体分别作为增益介质,分别对[100]和[111] 切割方向 Nd: YAG 棒进行被动调 Q 实验研究。实 验使用标定过晶轴方向的 Cr4+:YAG 晶体作为饱 和吸收体,采用铜热沉冷却,并且能够 360°旋转调 整。采用光纤耦合半导体激光器分别端面抽运 [111]和[100]切割方向的 Nd: YAG 晶体棒,采用 1/2 波片改变抽运光的偏振方向,其中[100]切割方 向的 Nd: YAG 晶体棒标定过晶轴方向。两种切割方 向 Nd: YAG 晶体棒的掺杂浓度均为1.0%,尺寸均 为  $\varphi$ 3 mm×20 mm,晶体棒的冷却条件相同,谐振 腔为腔长 180 mm 的对称平平腔,输出镜透射率为 50%。为了获得不同偏振状态下两种切割方向的 Nd:YAG 晶体棒被动调 Q 的输出特性,通过旋转 Cr<sup>4+</sup>:YAG 晶体,改变其在腔内对 1064 nm 振荡光 的饱和吸收方向,即改变了腔内振荡光的线偏振方





Fig. 1 Experimental setup of passively Q-switched laser

向,获得在 360°范围内被动调 Q 激光输出的变化规 律。实验采用 Tektronix TDS1012B-SC 数字示波 器和 InGaAs PIN 光电探测器进行抽运脉冲波形的 测量,偏振分光棱镜(PBS)和功率计测量输出偏振 方向及消光比。

### 3 实验结果及分析

对于光纤耦合半导体端面抽运激光器,由于输 出激光的偏振方向很大程度上取决于抽运光偏振方 向<sup>[14]</sup>,因此,为了获得稳定的激光输出,采用1/2 波 片调整抽运偏振方向。实验采用[100]切割方向 Nd:YAG晶体棒作为激光器的增益介质,由于 [100]切割方向 Nd:YAG 晶体棒在不同腔内偏振态 下存在各向异性输出特性,存在较大线偏振功率输 出的方向。为了获得稳定的高功率激光输出,先调 整 1/2 波片改变抽运偏振方向,使其与[100]切割方 向 Nd:YAG 晶体棒较大线偏振输出功率的方向相 同,即[011]、[01 1]、[011]和[011]方向。

在抽运功率2.5 W,抽运脉宽 230  $\mu$ s,重复频率 100 Hz 的条件下,旋转 Cr<sup>4+</sup>:YAG 晶体晶轴方向, 使用偏振分光棱镜对输出激光的消光比进行测量, Cr<sup>4+</sup>:YAG 晶体与抽运偏振方向的位置示意图如 图2所示,其中  $\theta$  是抽运偏振方向与 Cr<sup>4+</sup>:YAG 晶 体[110]方向的夹角。实验结果如图 3 所示,输出激 光消光比随 Cr<sup>4+</sup>:YAG 晶体旋转角度呈周期性变 化。当  $\theta$  为 45°、135°、225°和 315°时,抽运偏振方向 与 Cr<sup>4+</sup>:YAG 晶体晶轴[100]或[010]方向平行,此 时消光比达到了 300:1,输出激光的线偏振方向始





Fig. 2 Relative position between polarization direction of pump laser and local symmetry axis of [001]-cut Cr<sup>4+</sup>:YAG 终沿抽运偏振方向。当 $\theta$ 为 $0^{\circ}$ 、90°、180°和 360°时, 抽运偏振方向与 $Cr^{4+}$ :YAG 晶体晶轴[100]或[010] 方向呈 45°,此时输出激光非线偏振激光。进一步增 加抽运功率,重复频率不变,实验结果如图 3 所示。 从图中可以看出,输出激光消光比仍随 $Cr^{4+}$ :YAG 晶 体旋转角度呈周期性变化,当抽运偏振方向与 $Cr^{4+}$ : YAG 晶体晶轴[100]或[010]方向时,平行消光比进 一步提高,达到了 500:1,此时输出激光脉冲如 图 4(a)所示,脉宽 12.98 ns,稳定度约为 96.5%。当 抽运偏振方向与 $Cr^{4+}$ :YAG 晶体晶轴[100]或[010] 方向时,输出激光非偏振光,输出激光脉冲如图 4(b) 所示,脉宽 13.10 ns,稳定度约为 86.3%。



图 3 不同 Cr<sup>++</sup>:YAG 晶体角度下,[100]切割方向 Nd:YAG 被动调 Q 激光器的消光比

Fig. 3 Extinction ratio of [100]-cut Nd: YAG passively Q-switched laser as a function of rotation angle for [001]-cut Cr<sup>4+</sup>: YAG crystal

同时,测量了[100]切割方向 Nd:YAG 被动调 Q激光器中,Cr<sup>4+</sup>:YAG 晶体不同角度下的输出功 率,测量结果如图 5 所示。当 $\theta$ 为 45°、135°、225°和 315°时,获得了最大输出功率为 300 mW,单脉冲能 量 3 mJ;当 0°、90°、180°和 360°时,获得最小输出功 率为 255 mW,单脉冲能量 2.55 mJ。实验对比发 现,不同 Cr<sup>4+</sup>:YAG 晶体角度下,输出功率差异不 大。进一步增加抽运功率后,最大输出功率增加至 500 mW,单脉冲能量 5 mJ,最小输出功率增加至 440 mW,单脉冲能量 4.4 mJ。

为了对[100]切割方向 Nd:YAG 被动调 Q 激 光器高消光比的输出特性进行对比研究,实验采用 相同参数[111]切割方向 Nd:YAG 晶体棒作为增益 介质,在谐振腔结构相同的条件下进行被动调 Q 实 验研究。由于[111]切割方向 Nd:YAG 晶体为各向 同性晶体,因此在腔内未加入 Cr<sup>4+</sup>:YAG 晶体,旋 转 1/2波片改变抽运偏振方向时,未发现输出功率



图 4 [100]切割方向 Nd: YAG 被动调 Q 激光器输出激光脉冲。(a) θ 为 45°、135°、225°和 315°; (b) θ 为 0°、90°、 180°和 360°

Fig. 4 Output pulse time shape for [100]-cut Nd: YAG passively Q-switched laser. (a)  $\theta = 45^{\circ}$ , 135°, 225° and 315°; (b)  $\theta = 0^{\circ}$ , 90°, 180° and 360°





Fig. 5 Output power of [100]-cut Nd: YAG passively Qswitched laser as a function of rotation angle for [001]-cut Cr<sup>4+</sup>: YAG crystal

有明显变化。通过偏振分光棱镜(PBS)测量输出激 光的消光比,在抽运功率 2.5 W,抽运脉宽 230  $\mu$ s, 重复频率 100 Hz 的情况下,旋转 Cr<sup>4+</sup>:YAG 晶体 方向,消光比变化曲线如图 6 所示。从图中可以看 出,输出激光的消光比同样随 Cr<sup>4+</sup>:YAG 晶体旋转 角度呈周期性变化,当 $\theta$ 为 45°、135°、225°和 315°时 消光比最大,但是只有 25:1。当 $\theta$ 为 0°、90°、180°和 360°时消光比最小,只有 18:1。

当抽运光为低功率时,旋转 Cr<sup>4+</sup>:YAG 晶体, [111]切割方向 Nd:YAG 晶体棒输出激光的消光比 同样表现出了周期性变化。这是由于抽运光为线偏 振光,偏振方向沿着 Cr<sup>4+</sup>:YAG 晶体晶轴时,该偏 振方向的粒子将首先反转达到阈值,产生沿该偏振 方向的振荡光,达到阈值后形成激光输出。因此,该 抽运偏振方向的输出功率高于其他方向,并且为线 偏振光。但是由于[111]切割方向 Nd:YAG 晶体为



图 6 不同 Cr<sup>4+</sup>: YAG 晶体角度下, [111] 切割方向 Nd: YAG 晶体的消光比

Fig. 6 Extinction ratio of [111]-cut Nd: YAG passively Q-switched laser as a function of rotation angle for [001]-cut Cr<sup>4+</sup>: YAG crystal

各向同性晶体,并且存在热退偏效应,因此在增加抽运功率后,输出激光的消光比随 Cr<sup>4+</sup>:YAG 晶体旋转角度的周期性变化规律已经几乎不存在,输出激光消光比只有约 2:1,如图 6 所示。此时测量输出激光脉冲的脉宽及稳定度,当抽运偏振方向与 Cr<sup>4+</sup>:YAG 晶体晶轴[100]或[010]方向平行时,输出激光脉冲如图 7(a)所示,脉宽 13.08 ns,稳定度约为 91.2%。当抽运偏振方向与 Cr<sup>4+</sup>:YAG 晶体晶轴[100]或[010] 方向时,输出激光非偏振光,输出激光脉冲如图 7(b) 所示,脉宽 13.07 ns,稳定度约为 87.5%。

同时测量了[111]切割方向 Nd: YAG 被动调 Q 激光器中, Cr<sup>4+</sup>: YAG 晶体不同角度下的输出功率, 测量结果如图 8 所示。当 $\theta$ 为 45°、135°、225°和 315°时,获得了最大输出功率为 285 mW, 单脉冲能 量为 2.85 mJ。当 $\theta$ 为 0°、90°、180°和 360°时,获得 最小输出功率为 265 mW, 单脉冲能量为 2.65 mJ。 实验对比发现,不同 Cr<sup>4+</sup>:YAG 晶体角度下,输出功 率差异不大。进一步增加抽运功率后,最大输出功率

增加至 485 W,单脉冲能量 4.85 mJ,略低于[100]切 割方向 Nd:YAG 被动调 Q 激光器的最大输出功率。



图 7 [111]切割方向 Nd: YAG 被动调 Q 激光器输出激光脉冲。(a) θ为 45°、135°、225°和 315°; (b) θ为 0°、90°、 180°和 360°

Fig. 7 Output pulse time shape for [111]-cut Nd: YAG passively Q-switched laser. (a)  $\theta = 45^{\circ}$ , 135°, 225° and 315°; (b)  $\theta = 0^{\circ}$ , 90°, 180° and 360°



图 8 不同 Cr<sup>4+</sup>:YAG 晶体角度下,[111]切割方向 Nd:YAG 晶体的输出功率

Fig. 8 Output power of [111]-cut Nd: YAG passively Qswitched laser as a function of rotation angle for [001]-cut Cr<sup>4+</sup>: YAG crystal

为了对[100]切割方向 Nd: YAG 晶体棒的高消 光比激光输出特性进行分析,采用图 9 做进一步说



图 9 Nd: YAG 晶体立方单元中 Nd<sup>3+</sup>场方向示意图 Fig. 9 Orientations of the Nd<sup>3+</sup> sites relative to the axes X, Y, Z of the cubic unit cell 明。Nd<sup>3+</sup>总共有 6 个方向, x<sub>i</sub> 方向平行于 Nd: YAG 晶体立方单元中 X 轴的方向,  $y_i$  和  $z_i$  方向平 行于 Nd: YAG 晶体立方单元中面对角线的方向,即 跃迁偶极子方向<sup>[15]</sup>。偶极子与偶极子的相互作用 是能量交换的主要原因,而这种能量交换只能发生 在相互平行的方向上。根据偏振吸收选择规则[15], 激光 增 益 正 比 于  $[\cos^2(\alpha_a)n_a + \cos^2(\alpha_b)n_b +$  $\cos^2(\alpha_c)n_c$ ],其中  $n_i$  为 a, b, c 三个方向上的反转粒 子数; ai 是 xi 方向与偏振方向的夹角。对于[100]切 割方向 Nd: YAG 晶体棒,假设抽运偏振方向沿着 [011]方向,对于[011]偏振方向增益正比于[1/  $(2n_a)+1/(2n_b)]$ 。由于谐振器内振荡光的建立起 始于噪声,在抽运能量只能使 a 和 b 两个方向上的 上能级粒子数达到阈值,只有 a 和 b 两个方向上的 反转粒子数被倒空,而对于垂直于抽运偏振方向的 c方向不存在粒子数向上能级反转,因此对于激光 器第一个输出脉冲,偏振方向将沿「011〕方向。因 此,当抽运方向沿着被动调 Q 晶体 Cr<sup>4+</sup>:YAG 的晶 轴方向,并且与「100 切割方向 Nd: YAG 晶体的 [011](或[01 1]、[011]、[011])方向平行时,输 出激光脉冲为线偏振光。同时,前期实验研究发现, 当抽运偏振方向与 Cr4+: YAG 晶轴方向平行时,输 出激光最稳定,且为线偏振激光<sup>[16]</sup>。当旋转 Cr<sup>4+</sup>: YAG 晶体方向 $45^{\circ}$ ,即 $\theta$ 为 $0^{\circ}$ 、90°、180°和 360°时,抽 运偏振方向与「100 ] 切割方向 Nd: YAG 晶体的 [011](或[011]、[011]、[011])方向依然平行, 但与 $Cr^{4+}$ :YAG 晶体晶轴方向呈 $45^{\circ}$ ,此时 $Cr^{4+}$ : YAG 晶体的[010]和[100]晶轴方向同时吸收腔内 振荡粒子,所以两个晶轴方向的漂白作用均衡,从而 两个晶轴方向的振荡光同时达到激光阈值,相互竞 争从而产生的激光脉冲是非偏振光。因此,当抽运 功率为2.5 W时,[100]切割方向 Nd:YAG 晶体棒 的输出功率表现出了周期性变化,输出功率最大的 方向与抽运偏振方向相同,输出激光为线偏振光。 当进一步增大抽运功率后,由于[100]切割方向 Nd: YAG 晶体的各向异性特性,因此其消光比进一步提 升。

由于实验采用[001]切割方向 Cr<sup>4+</sup>:YAG 晶体 作为饱和吸收体,与单一偏振方向的起偏器件不同, [001]切割方向的 Cr<sup>4+</sup>:YAG 晶体在偏振方向平行 于[010]和[100]两个正交的晶轴方向,存在两个对 1064 nm 波长几乎相同的透射峰。当抽运偏振方向 沿[001]切割方向 Cr<sup>4+</sup>:YAG 晶轴方向45°时, [010]与[100]晶轴方向同时吸收沿抽运偏振方向的 振荡光,两个晶轴方向均对振荡光产生漂白作用,从 而产生两个正交偏振的随机脉冲信号输出。因此, Cr<sup>4+</sup>:YAG 晶轴方向与抽运偏振方向相同和与抽运 偏振方向呈45°两种情况下,[100]切割方向 Nd: YAG 被动调 Q 激光器输出功率差异不大。

#### 4 结 论

采用「100]和「111]切割方向 Nd: YAG 晶体棒 作为增益介质,[001]切割方向的 Cr4+:YAG 晶体 作为饱和吸收体,进行被动调Q实验研究。对于 [100]切割方向 Nd: YAG 晶体, 在旋转 Cr4+: YAG 晶体一周的范围内,输出激光消光比和功率表现出 了周期性变化,当抽运偏振方向沿着被动调Q晶体 Cr4+:YAG 的晶轴方向,并且与[100]切割方向 Nd: YAG 晶体的[011](或[01 1]、[011 ]、[01 1])方 向平行时,获得了稳定、高消光比的线偏振光激光输 出。对于[111]切割方向 Nd: YAG 晶体,在低功率 抽运条件下,在旋转 Cr4+:YAG 晶体一周的范围 内,输出激光消光比和功率同样表现出了周期性变 化,但由于热退偏效应,输出激光消光比明显小于 [100]切割方向 Nd: YAG 晶体棒。实验研究证明,相 比于传统的[111]切割方向 Nd: YAG 晶体棒,采用 半导体抽运「100 ] 切割方向 Nd: YAG 晶体棒进行被 动调 Q,能够获得稳定、高消光比的线偏振光激光输出。

#### 参考文献

- 1 J J Zayhowski. Passively *Q*-switched Nd: YAG microchip lasers and applications [J]. J Alloys and Compounds, 2000, 303-304: 393-400.
- 2 R J Lan, M D Liao, H H Yu, *et al.* 3.3 ns Nd: LuVO<sub>4</sub> microtype laser [J]. Laser Phys Lett, 2009, 6(4), 268-271.
- 3 A G Okhrimchuk, A V Shestakov. Absorption saturation mechanism for YAG:Cr<sup>4+</sup> crystal [J]. Phys Rev B, 2000, 61 (2): 988-995.
- 4 Y Wang, M Gong, P Yan, *et al.*. Stable polarization short pulse passively *Q*-switched monolithic microchip laser with [110] cut Cr<sup>4+</sup>: YAG [J]. Laser Phys Lett, 2009, 6(11): 788-790.
- 5 W Koechner. Solid-State Laser Engineering [M]. Berlin: Springer, 2003.
- 6 S D Jackson, J A Piper. Thermally induced strain and birefringence calculations for a Nd: YAG rod encapsulated in a solid pump light collector [J]. Appl Opt, 1996, 35(9): 1409-1423.
- 7 W Koechner, D K Rice. Effect of birefringence on the performance of linearly polarized YAG: Nd lasers [J]. IEEE J Quantum Electron, 1970, 6(9): 557-566.
- 8 Walter Koechner, Dennis K Rice. Birefringence of YAG: Nd laser rods as a function of growth direction [J]. J Opt Soc Am, 1970, 61(6): 758-766.
- 9 L N Soms, A A Tarasov, V V Shashkin. Problem of depolarization of linearly polarized light by a YAG: Nd<sup>3+</sup> laseractive element under thermally induced birefringence conditions [J]. Sov J Quantum Electron, 1980, 10(3): 350-351.
- 10 I Shoji, T Taira. Intrinsic reduction of the depolarization loss in solid-state lasers by use of a [110]-cut Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> crystal [J]. Appl Phys Lett, 2002, 80(17): 3048-3050.
- 11 O Puncken, H Tünnermann, J J Morehead, et al.. Intrinsic reduction of the depolarization in Nd: YAG crystals [J]. Opt Express, 2010, 18(19): 20461-20474.
- 12 H Tünnermann, O Puncken, P Weßels, et al.. Linearly polarized single-mode Nd: YAG oscillators using [100]- and [110]-cut crystals [J]. Opt Express, 2011, 19(14): 12922-12999.
- 13 Zhe Sun, Qiang Li, Menghua Jiang, *et al.*. Improvement of the linearly polarized output power in Nd: YAG laser with [100]-cut rod [J]. Chin Opt Lett, 2012, 10(s1): S11402.
- 14 N V Kravtsov, E G Lariontsev, N I Naumkin. Dependence of polarisation of radiation of a linear Nd: YAG laser on the pump radiation polarisation [J]. Quantum Electron, 2004, 34(9): 839-842.
- 15 M Lukae, S Troit, M KaZiE. Flip-flop polarization effect in cube-comer-flat cavity Nd: YAG laser [J]. IEEE J Quantum Electron, 1992, 28(11): 2560-2562.
- 16 Zhe Sun, Qiang Li, Yanli Su, et al.. Controllable polarization for passively Q-switched Nd: YAG/Cr<sup>4+</sup>: YAG laser [J]. Opt & Laser Technology, 2014, 56: 269-272.

栏目编辑: 何卓铭